

Efficiency and Environmental Impact Assessment

L3Pilot Final Event

Elina Aittoniemi, Teemu Itkonen, Satu Innamaa, Mina Torrao, Henri Sintonen – VTT

Michael Schuldes - ika

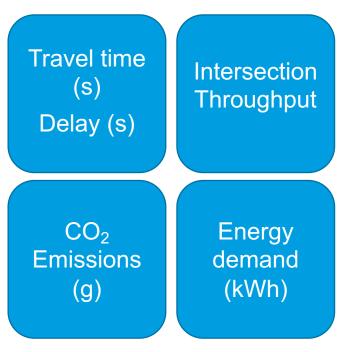
www.L3Pilot.eu

Twitter@_L3Pilot_

LinkedInL3Pilot

Research questions

- 1. What are the impacts of automation on travel times, reliability of travel time and network capacity?
- 2. What are the impacts of automation on energy demand and CO₂ emissions?
- 3. What impacts can be expected on the European (EU27+3) level?
 - 27 EU countries + Norway, Switzerland and United Kingdom



Measuring effects: The indicators of interest

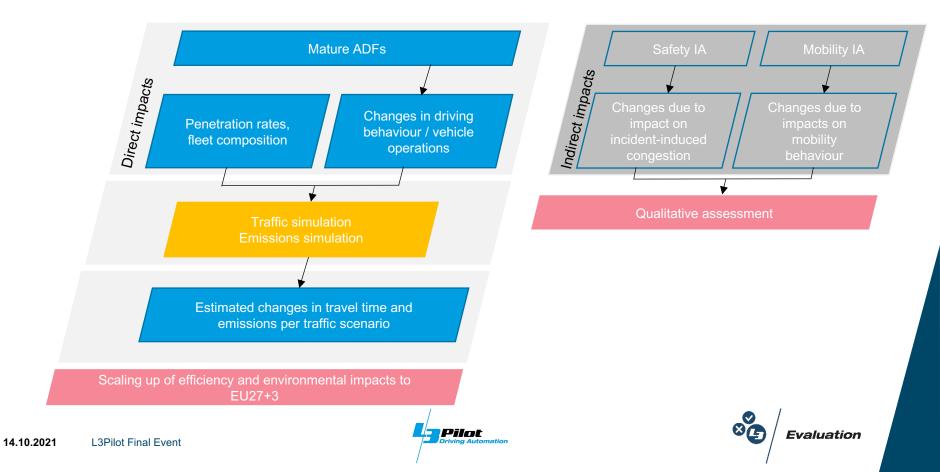
Time used for a given distance

Delay indicates congestion

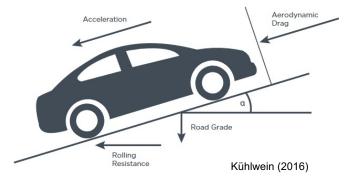
Correlates with fuel consumption

Indicates traffic volume and efficiency

Total energy used for moving the vehicles


Main approach

- L3 ADFs (automated driving functions) represented by L3Pilot Mature ADFs
 - Represent ADFs mature enough for the usage on public roads by ordinary drivers
 - ADFs do not represent any particular L3Pilot ADF tested at the pilot sites
 - In our simulations, automated vehicles are mainly characterised by longer time headways and more stable acceleration
 - ADFs operate in good weather conditions, heavy rain and snowfall excluded
 - ADFs aim to drive at the speed limit, or up to 130km/h
- Effect estimates from traffic simulations
 - Motorway effects scaled up to European level
- Snapshot approach: Add L3 ADFs to current traffic system
 - No other differences in automated and manually driven vehicles capture effect of automation only


Method for assessing efficiency and environmental impacts

Tools

- Traffic simulations with PTV Vissim
 - Microscopic traffic simulation tool
- CO₂ emissions with EnViVer
 - Calculates emissons from detailed vehicle data from Vissim based on specified fleet composition
 - Uses Versit+ emissions model
- Energy demand
 - Calculated based on driving resistance forces

Evaluation

Urban roads – Methodology

Urban Simulations with PTV VISSIM

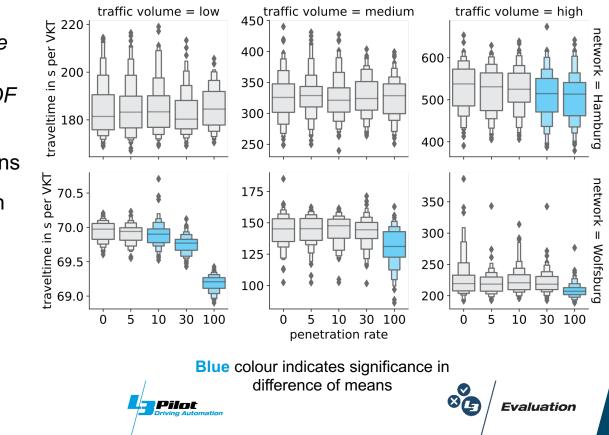
- Question: How does the rate of L3 ADF-enabled vehicles impact efficiency in urban settings?
- Generic approach proved unfeasible
 - Hamburg and Wolfsburg networks
 - Variable rates of automated vehicles among passenger cars
 - Fixed rate of public transport, pedestrians, cyclists
 - Several traffic volumes and speed limits
- Repeated for 100 40-minute trials per condition (1000 hours of simulated traffic)



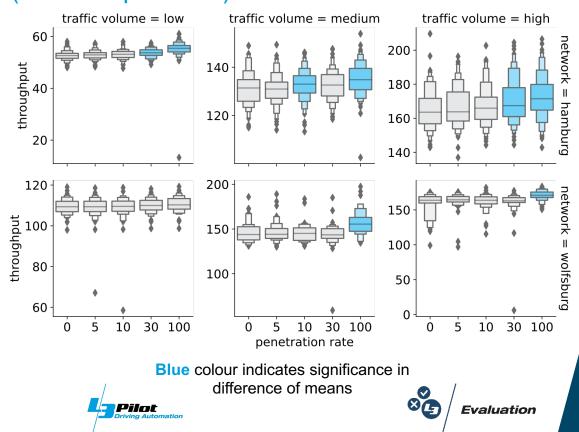
Evaluation

Urban Simulations – Scaling Up

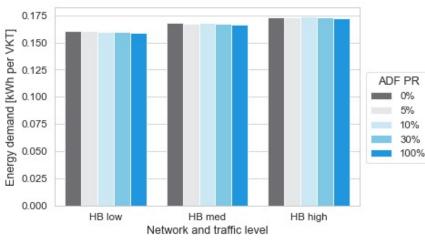
- Urban Area
 - High diversity
 - High complexity
 - → Difficult to form clusters
 - → How to compare cities?
- Limited Data
 - Degree of detail in OpenStreetMap
 - Traffic data
- \rightarrow Difficult to scale up

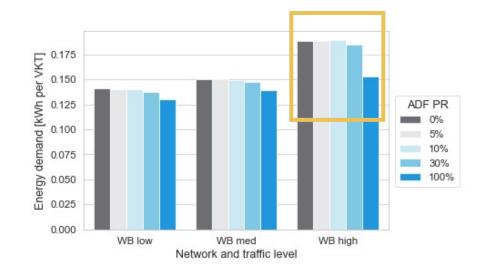

Evaluation

Urban roads – Results


Results: Traffic Flow Travel time

- Decrease in travel time and delay with high traffic volumes and ADF penetration rates
- Spread within conditions
- Effect size depends on network


Results: Traffic Flow Intersection throughput (vehicles per hour)


- Increase in intersection throughput with high ADF penetration rates
- Spread within conditions
- Effect size depends on network

Results: Environment

 Decrease in CO₂ and energy use with high traffic volumes and ADF penetration rates for Wolfsburg network

 Effect size not consistent between networks

- Benefits for both travel time and emissions at highest traffic volumes and high penetration rate
- Effect size dependent on network properties and structure
- Large spread of indicator values per condition
 - Confounding factors influenced the outcome
- Further research needed to allow for generalisation of impact estimates to the European level

Evaluation

Motorway – Simulation methodology

Starting points of motorway simulation

- What is the impact of automation on the efficiency of motorway traffic?
- In order to answer this, representative scenarios were needed
- Traffic volume was considered in five classes
- Road type analysis using OpenStreetMap
 - All combinations of number of lanes and speed limit representing at least 1% of motorway network in EU27+3 were included in the simulation
 - Division into line sections and sections with on- and off-ramps

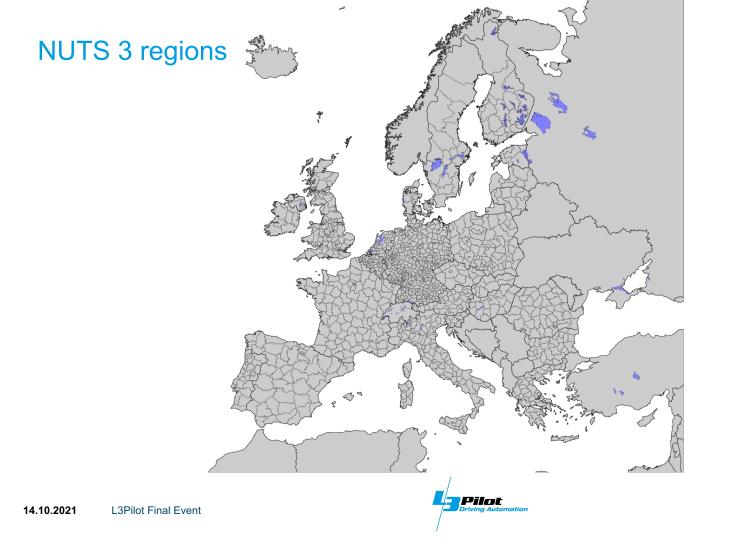
Volume/h/lane and volume class

500	1000	1500	2000	2500
1	2	3	4	5

Speed limit	Nr. of lanes	Share
130	2	26.8%
120	2	21.3%
no limit	2	9.2%
110	2	6.5%
130	3	6.4%
100	2	5.6%
120	3	3.9%
110	3	3.7%
no limit	3	3.4%
140	2	3.0%
80	2	2.1%
100	3	2.1%
90	2	1.4%

Motorway simulations with PTV Vissim

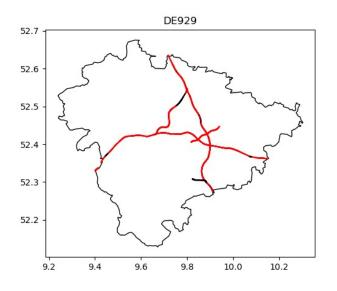
- A "generic" four kilometre motorway section was created
 - Variable penetration rates of automated vehicles among manually driven vehicles (0%, 5%, 10%, 30%, 100%)
 - Rate of (manually driven) heavy duty vehicles fixed to traffic volume (6%–12%)
 - Five traffic volumes and eight speed limits
 - Two or three lanes per direction
 - Ramp sections and line sections
- Resulted in 700 variable combinations ("traffic scenarios")
- Repeated for twenty 30-minute trials per condition (149 million vehicle km)



Evaluatio

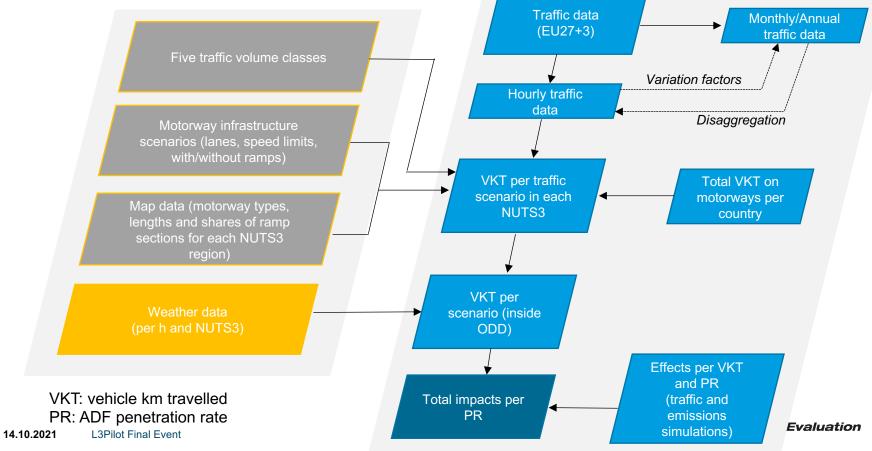
Evaluation

Motorway – Scaling up to EU27+3 Methodology



Scaling up

Scaling up was based on collection and classification of traffic volume data from European countries, in combination with geographical data from OpenStreetMap


Example: Hanover region (DE929)

- The vehicle km travelled in each traffic scenario were determined for all NUTS3 regions
- Hour-by-hour weather data was applied to determine whether driving happened within Operational Design Domain (ODD)
- Results from the simulation step were matched to traffic scenarios to provide the total impact for each NUTS3 region

Scaling up process for efficiency & environment motorway impacts to EU27+3

Evaluation

Motorway – Results

Overall impact on traffic flow efficiency in EU27+3

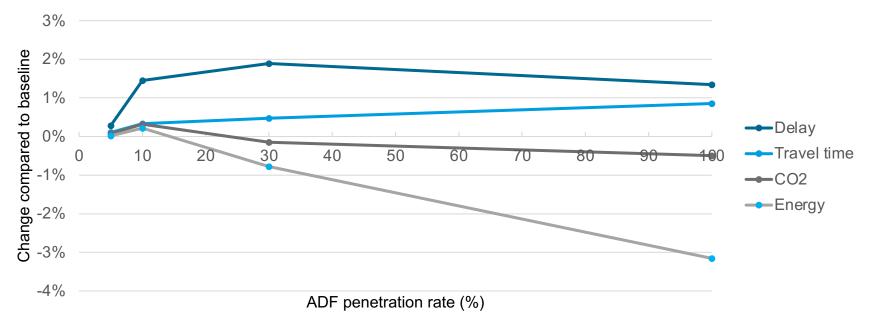


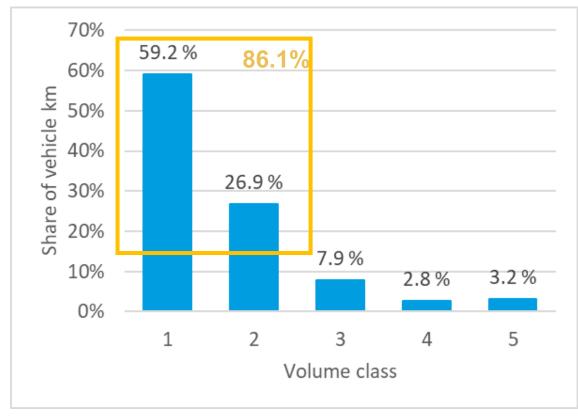
Figure shows the overall impact of ADF penetration rate on the indicators: Change in travel time, delay, CO₂ and energy demand compared to baseline

	PR	Travel time	Delay	CO2	Energy
	5%	0.1%	0.3%	0.1%	0.0%
Pilot Driving Automation	10%	0.3%	1.5%	0.3%	0.2%
	30%	0.5%	1.9%	-0.2%	-0.8%
	100%	0.9%	1.4%	-0.5%	-3.2%

Most common motorway-traffic-combinations

Total: 58% of vehicle km travelled (VKT) in EU27+3

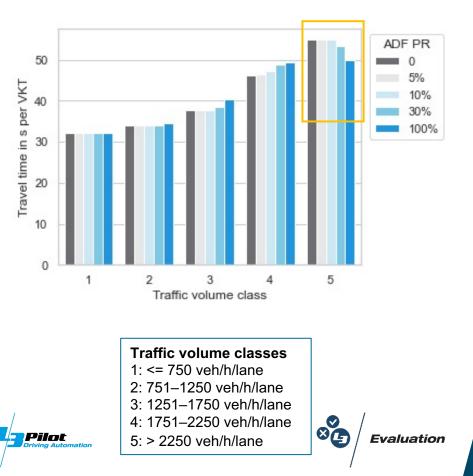
		Nr. of	Speed limit		Traffic volume
	Share of VKT	lanes	(km/h)	Veh/h/lane	class
1	12.9%	2	130	Up to 750	1
2	9.7%	2	120	Up to 750	1
3	6.6%	3	130	Up to 750	1
4	5.8%	2	unlimited	Up to 750	1
5	4.2%	2	130	750–1250	2
6	4.1%	3	120	Up to 750	1
7	4.0%	2	120	750–1250	2
8	3.7%	3	110	Up to 750	1
9	3.6%	3	unlimited	Up to 750	1
10	3.5%	3	unlimited	750–1250	1


Driving Auton

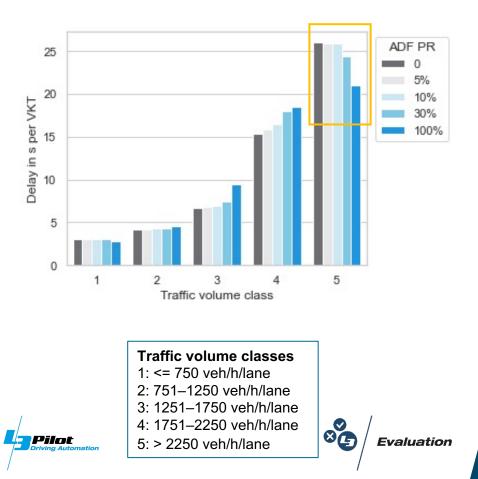
Total nr of combinations: 70

(combinations of speed limit, number of lanes and traffic volume)

Most vehicle km are driven in low traffic conditions


Volume classes 1: up to 750 veh/h/lane 2: 751 – 1250 veh/h/lane 3: 1251 – 1750 veh/h/lane 4: 1751 – 2250 veh/h/lane 5: over 2250 veh/h/lane

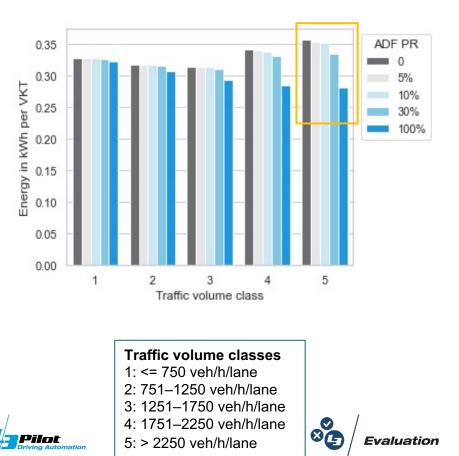
Results: Travel time


- Decrease in travel time with high traffic volumes and ADF penetration rates among passenger cars
- Small effects with lower traffic volumes
- Highest traffic volume:
 - Decrease in travel time 3.0% with 30% and 9.0% with 100% penetration rate among passenger cars

Results: Delay

- Decrease in delay with high traffic volumes and ADF penetration rates among passenger cars
- Small effects with lower traffic volumes

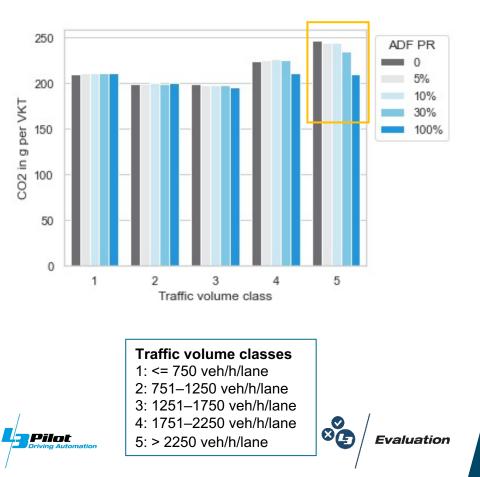
- Highest traffic volume:
 - Decrease in delay 6.3% with 30% and 19.0% with 100% penetration rate among passenger cars

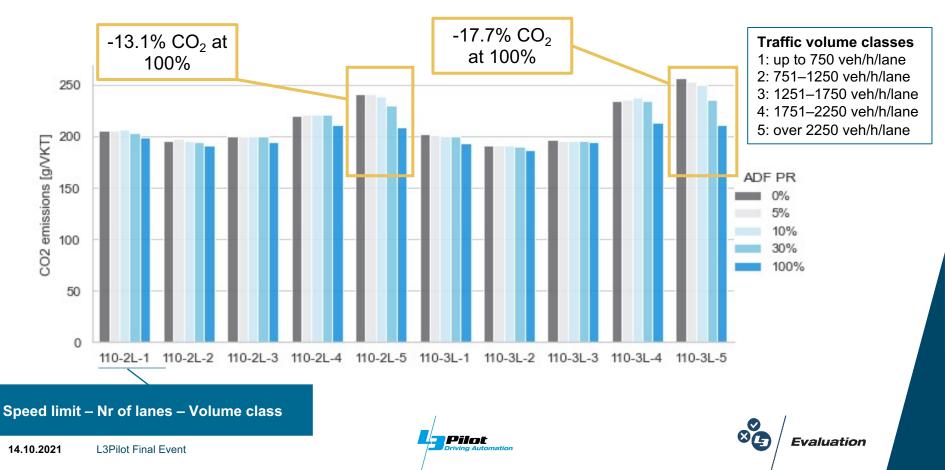


Results: Energy demand

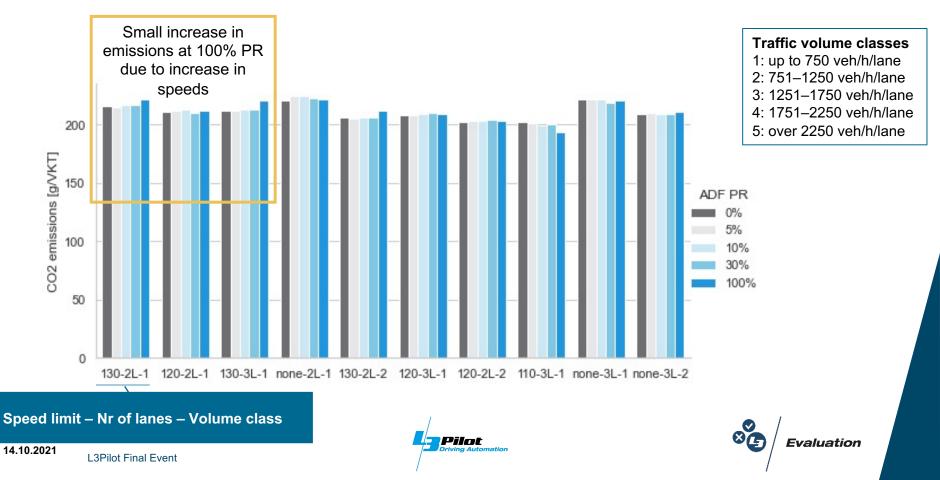
- Decrease in energy demand with high traffic volumes and ADF penetration rates among passenger cars
- Small effects with lower traffic volumes

- Highest traffic volume:
 - Decrease in energy consumption
 6.0% with 30% and 21.3% with
 100% penetration rate among passenger cars




Results: CO₂ emissions

- Decrease in CO₂ with high traffic volumes and ADF penetration rates among passenger cars
- Small effects with lower traffic volumes


- Highest traffic volume:
 - Decrease in CO₂ 4.8% with 30% and 14.8% with 100% penetration rate among passenger cars

Speed limit 110 km/h with 2 and 3 lanes and different traffic volumes

Ten most common motorway-traffic-combinations in EU27+3

Indirect impacts

- Mobility impact: ~6% increase in vehicle km travelled at 100% penetration rate
 - Results shift towards higher traffic volumes
 - Overall, adverse impacts on emissions and efficiency
- **Safety** impact: Reduction in number of accidents
 - Local effects of accident caused congestion, partly addressed in traffic data
 - Reduction in number of accidents leads to improvement for efficiency, impact for environment is uncertain
- Long-term behavioural adaptation, impact on other road users
 - Yet unknown, but impact potential is large
- Other factors, e.g. energy consumption of sensors

Contribution to the state of the art

- Automated vehicle behaviour was set up to align with mature functions together with ADF developers
 - Most findings from literature are based on rather different assumptions of automated vehicle behaviour, e.g. very short headways
 - L3Pilot simulation results are in line with those from studies using similar headways
- Holistic methodology created using representative traffic scenarios for simulation
 - Most studies have simulated one network with one speed limit and (high) traffic volume
 - Results have not previously been scaled up to the whole EU motorway network

Conclusions

- Tradeoffs exist between efficiency and environmental impacts
- Urban environment
 - Effect depends on network properties and structure
 - Further research is needed to allow for generalisation of impact estimates to the European level
- Motorways
 - Impacts are largest with high traffic volume and penetration rates
 - Absolute values are lowest with low speed limits and low and moderate traffic volumes
 - Effects of ADF on traffic efficiency and emissions on EU level are rather small
 - Mostly because driving on EU motorways takes place in low traffic conditions
 - However, benefits may be experienced locally, e.g. on urban motorways, by a large number of drivers

Thank you for your kind attention.

Elina Aittoniemi elina.aittoniemi@vtt.fi

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723051.

www.L3Pilot.eu

Twitter@_L3Pilot_

LinkedInL3Pilot