

VALIDATION SCENARIOS FOR VRU – RESULTS OF THE PROSPECT PROJECT

Andrés Aparicio Applus IDIADA, on behalf of the PROSPECT project consortium

Session SIS45 – Challenges on Testing and Validation of Automated Driving

INCIPLES OF OPERATION

FETY EVALUATION FOR CONSUMERS

About Euro NCAP

To eliminate road trauma by encouraging safer vehicle choices

Thatcham

Research

Department

for Transport

Generalitat de Catalunya

Government of Catalonia

Ť

TRAFIKVERKET

Automobile Club d'Italia

ADAC

Liberti • Exalist • Fraternis

RÉPUBLIQUE FRANÇAISE

de l'Écologie, du Développement durable et de l'Énergie

Environment

Ministry of Infrastructure and the

DU GRAND-DUCHÉ DE LUXEMBOURG Ministère du Développement durable

LE GOUVERNEMENT

et des Infrastructures

FETY EVALUATION FOR CONSUMERS

Euro NCAP Rating Scheme Update

D EVALUATION FOR CONSUMERS

Automated Driving Test Matrix (under discussion)

•• — • - =

	Longitudinal Control		Test Speed		
\leq	Scenario	Distance	VUT	Target	
	Stationary	> sensor range	50-130 km/h	0 km/h	
	Moving	> sensor range	80-130 km/h	20, 60 km/h	
	Braking	closest setting	50, 80, [130] km/h	50, 80, [130] km/h	
	Cut-in	closest setting	50, 130 km/h	10, 80 km/h	
	Cut-out	closest setting	70, 100 km/h	50, 80 km/h	

	Lateral Control	Distance	Test Speed		
	Scenario		VUT	Target	
	Steering capabilities (highway radius)		90-130 km/h	-	
	Lane change (ELK)	closest setting	72 km/h 80 km/h	72 km/h 72 km/h	
	Override effort				

	Speed Control	Test Conditions		
	Speed Limit Detection	Weather Time, Distance, Arrows, Vehicle Category, Implicit Speed Limits, Dynamic Speed Limits, [Advisory Speed Limits]		
	Speed Control Test	Speed Limit Detection Test		
	Traffic Sign Recognition	Lane closure, Warning signs, Traffic lights etc.		

D EVALUATION FOR CONSUMERS

Vehicle Speed mph

RU EVALUATION FOR CONSUMERS

DW DO WE DEFINE SCENARIOS?

Ontine

DAIMLE

40

HAT TO TAKE INTO ACCOUNT?

Study

Specification

Advanced VRU sensing

Actuation and control strategies

Integration

Validation

- Macro-statistical accident research
- In-depth accident research
- Field Operational Tests

Car-to-VRU Use Cases:

- Crossing scenarios
- Longitudinal scenarios
- Turning scenarios

1	Distribution in %	Part IPVERL 4&5 VO Vehicle [kph]	Part IPVERL 4&5 VO Cyclist [kph]	Part IPVERL 4&5 Time of Day	Part IPVERL 4&5 Obstruction	
	4,4%	РКОВРЕСТИС Т2 33 	PROSPECT UC T LA	Time of Day Day Blave Whight	Obstruction II Ves II No T1:A 23% 88%	
	1,4%	PROSPECT UC 1 8	0 10 20 30 40 50	Time of Day Day # Day # Days # Night	Obstruction = Yes No T1-8 100%	

- Detailed scenarios
- Reference data for advanced perception
- Testing tools
- Evaluation protocols

ID	VUT Track	Speed profile (km/h)	VRU Track	VRU Speed (km/h)	Signs / Clutter	Test runs	Pictogram
CAI01	Large road, Track E	Turning left (20-30), Track G	Crossing small road (from left, Track H)	5 – 10	Priority signs on large road	1. v _{VUT} = 20kph; 2. v _{VUT} = 30kph; 3. v _{VUT} = x5kph (optional)	t 1
CAI02	Large road, Track E	Turning left (20-30), Track G	Crossing small road (from right, Track G)	5 – 10	Priority signs on large road	 v_{VUT} = 20kph; v_{VUT} = 30kph; vVUT = x5kph (optional) 	•
CAI03	Large road, Track A	Turning right (15-30), Track G	Crossing small road (from right, Track G)	5 – 10	Priority signs on large road	1. v _{VUT} = 15kph; 2. v _{VUT} = 20kph; 3. v _{VUT} = 30kph; 4. v _{VUT} = x5 kph (optional)	***
CAI04	Large road, Track A	Turning right (15-30), Track G	Crossing small road (from left, Track H)	5 – 10	Priority signs on large road	1. v _{VUT} = 15kph; 2. v _{VUT} = 20kph; 3. v _{VUT} = 30kph; 4. v _{VUT} = x5 kph (optional)	

- A wholistic approach is needed for the definition of validation scenarios for ADAS and AD
- Special emphasis is needed for safety critical scenarios (accidentology)
- PROSPECT has compiled a relevant database of scenarios for VRUs

OSPECT FINAL EVENT

FINAL EVENT

of the European projects on Traffic Safety of Vulnerable Road Users

12th October 2018 at Applus IDIADA

These projects are co-founded by the European Union's Horizon 2020 Research and Innovation Programme under the following Grant Agreements: No. 634149, No. 635895 and No. 635975

HANK YOU VERY MUCH FOR YOUR KIND ATTENTIO

Andrés Aparicio

Senior Manager, ADAS and Connected and Automated Vehicles Applus IDIADA Group

L'Albornar, PO Box 20 E-43710 Santa Oliva (Tarragona) Spain T +34 977 166 006 F +34 977 166 005 aaparicio@idiada.com www.idiada.com