VALIDATION SCENARIOS FOR VRU – RESULTS OF THE PROSPECT PROJECT

Andrés Aparicio
Applus IDIADA, on behalf of the PROSPECT project consortium

Session SIS45 – Challenges on Testing and Validation of Automated Driving
PRINCIPLES OF OPERATION

<table>
<thead>
<tr>
<th>Navigation layer</th>
<th>Guidance layer</th>
<th>Stabilization layer</th>
</tr>
</thead>
</table>

Principle of operation A
- **Information and warning**
 - Indirect influence on the vehicle via the driver.
 - Status information
 - Warning (abstract hazard)
 - Warning (concrete hazard)

Principle of operation B
- **Continuously automating**
 - Take direct influence on vehicle guidance (conscious activation by the driver, divided responsibilities in the driving task)

Principle of operation C
- **Temporally intervening in accident-prone situations**
 - Preventive intervention in case of negative situation prediction
 - Driver does not react or is inaccessible
 - Driver cannot handle due to performance limitations

SAE levels

According to the 3-level hierarchy of the driving task (Donges, 1982)
SAFETY EVALUATION FOR CONSUMERS

About Euro NCAP

To eliminate road trauma by encouraging safer vehicle choices
Automated Driving Test Matrix (under discussion)

Longitudinal Control

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Distance</th>
<th>Test Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary</td>
<td>> sensor range</td>
<td>50-130 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 km/h</td>
</tr>
<tr>
<td>Moving</td>
<td>> sensor range</td>
<td>80-130 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20, 60 km/h</td>
</tr>
<tr>
<td>Braking</td>
<td>closest setting</td>
<td>50, 80, [130] km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50, 80, [130] km/h</td>
</tr>
<tr>
<td>Cut-in</td>
<td>closest setting</td>
<td>50, 130 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10, 80 km/h</td>
</tr>
<tr>
<td>Cut-out</td>
<td>closest setting</td>
<td>70, 100 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50, 80 km/h</td>
</tr>
</tbody>
</table>

Lateral Control

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Distance</th>
<th>Test Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering capabilities (highway radius)</td>
<td>90-130 km/h</td>
<td>-</td>
</tr>
<tr>
<td>Lane change (ELK)</td>
<td>closest setting</td>
<td>72 km/h 80 km/h</td>
</tr>
<tr>
<td>Override effort</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Speed Control

<table>
<thead>
<tr>
<th>Test Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Limit Detection</td>
<td>Weather Time, Distance, Arrows, Vehicle Category, Implicit Speed Limits, Dynamic Speed Limits, [Advisory Speed Limits]</td>
</tr>
<tr>
<td>Speed Control Test</td>
<td>Speed Limit Detection Test</td>
</tr>
<tr>
<td>Traffic Sign Recognition</td>
<td>Lane closure, Warning signs, Traffic lights etc.</td>
</tr>
</tbody>
</table>
AD EVALUATION FOR CONSUMERS

A. Aparicio, Validation scenarios for VRUs – results of the PROSPECT project
HOW DO WE DEFINE SCENARIOS?

<table>
<thead>
<tr>
<th>Project title</th>
<th>PROactive Safety for Pedestrians and CyclisTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronym</td>
<td>PROSPECT</td>
</tr>
<tr>
<td>Objective</td>
<td>To significantly improve the effectiveness of active VRU safety systems compared to those currently on the market</td>
</tr>
<tr>
<td></td>
<td>• by expanding scope of scenarios addressed by the systems</td>
</tr>
<tr>
<td></td>
<td>• and improving overall system performance</td>
</tr>
<tr>
<td>GA number</td>
<td>634149</td>
</tr>
<tr>
<td>Coordinator</td>
<td>IDIADA Automotive Technology, SA</td>
</tr>
<tr>
<td>Starting date</td>
<td>1(^{st}) May 2015</td>
</tr>
<tr>
<td>Ending date</td>
<td>31(^{st}) October 2018</td>
</tr>
</tbody>
</table>
WHAT TO TAKE INTO ACCOUNT?

1. Study
2. Specification
3. Advanced VRU sensing
4. Actuation and control strategies
5. Integration
6. Validation
• Macro-statistical accident research
• In-depth accident research
• Field Operational Tests

Car-to-VRU Use Cases:
• Crossing scenarios
• Longitudinal scenarios
• Turning scenarios
RESULTS

- Detailed scenarios
- Reference data for advanced perception
- Testing tools
- Evaluation protocols
• A wholistic approach is needed for the definition of validation scenarios for ADAS and AD

• Special emphasis is needed for safety critical scenarios (accidentology)

• PROSPECT has compiled a relevant database of scenarios for VRUs
A. Aparicio, Validation scenarios for VRUs – results of the PROSPECT project
THANK YOU VERY MUCH FOR YOUR KIND ATTENTION
Andrés Aparicio
Senior Manager, ADAS and Connected and Automated Vehicles
Applus IDIADA Group

L'Albornar, PO Box 20
E-43710 Santa Oliva (Tarragona) Spain
T +34 977 166 006
F +34 977 166 005
aaparicio@idiada.com
www.idiada.com