Methodology for evaluating automated driving in Europe

SIS23, ITS World Conference, Singapore, 23 October 2019

Satu Innamaa
VTT Technical Research Centre of Finland Ltd.
Research question selection

Theories of impact areas

Descriptions of AD functions

RESEARCH QUESTIONS (3 levels) for all evaluation and impact areas:

• Technical & traffic evaluation: System performance, Driving behaviour
• User & acceptance evaluation
• Impact evaluation: Mobility, Safety, Efficiency, Environment
• Socio-economic evaluation

Feasibility in terms of:
• study design
• data logging
• evaluation methods
Experimental procedure set-up

Experimental procedures: Approaches, participants, study design (incl. baseline)

• Aim: Sufficient commonalities to be able to make harmonised evaluation

Step 1: Description of alternatives
• Alternatives
• Pros & cons
• Minimum requirements

Step 2: Pilot site consultation
• Support on how to implement the methodology into practice
• Awareness of optimal solution vs. Best practical solution for a pilot study
Method for technical and traffic evaluation

Driving with ADF → Time series data logs → Common data format → Enriched data set incl. driving scenarios / events → Indicators per scenario / event → Merge of indicators across pilot sites → Answer to RQs → Input for impact assessment

Selected partner

Piloting

Evaluation
Method for user & acceptance evaluation

- **Pilot site questionnaires**, completed by participants testing the ADFs
 - Users' impressions on e.g. acceptance, safety and comfort
- **Annual survey**, large-scale international study
 - Acceptance of ADFs and monitor changes over time
- **Video- and vehicle-based data**
 - Frequency of interactions with the ADF, drivers’ posture, their engagement with non-driving related tasks, and their resumption of control from automation
- **Interviews and focus groups** to assess drivers’ views of ADFs
 - Situations that cannot be observed or explained by the other methods employed
Method for mobility impact assessment

- Trips today in EU (number, duration, distance)
 - Trips that may be affected (definition)
 - Potential impacts (qualitative assessment)

Approach:
- Baseline
- Near and future scenarios
- Amount of travel
- Travel patterns
- Trip quality

Data Sources:
- National travel surveys
- TeleFOT & euroFOT travel data
- ODD descriptions
- Questionnaire/Survey results
- Focus groups

Research Questions:

ITS World Congress
23 Oct 2019

Methodology
Method for safety impact assessment

- External input data
- Simulation based process steps
- Steps including the STAMP method
- Step including the ERIC method

Input data
- Accident data
- Mature L3Pilot function
- Input from L3Pilot pilot studies
- Traffic & infrastructure data

Scenario definition
- Identification of ODD driving scenarios
- Relevance of driving scenarios per country
- Identification of driving scenarios with potential positive effects
- Definition of (relevant) driving scenarios
- Definition of traffic scenarios (country specific)

Effect determination
- Simulation of relevant driving scenarios
- Safety effects per driving scenario
- Accident severity per driving scenario
- Safety effects per driving scenario and penetration rate
- Simulation of relevant traffic scenarios
- Frequency of driving scenarios at different penetration rates

Scaling up of safety effects
Method for efficiency & environmental impact assessment

- **Direct impacts**
 - T&T evaluation
 - Mature ADFs
 - Penetration rates, fleet composition
 - Changes in driving behaviour / vehicle operations
- **Indirect impacts**
 - Safety IA
 - Changes due to impact on incident-induced congestion
 - Mobility IA
 - Changes due to impacts on mobility behaviour
 - Traffic simulation
 - Emissions simulation
 - Other assessment
 - Estimated changes in travel time and emissions per traffic scenario

- Scaling up of efficiency and environmental impacts to EU28
Method for socio-economic impact assessment

- **Safety IA**: Impacts on safety, in number and severity of accidents
- **Efficiency IA**: Impacts on efficiency in travel time
- **Environmental IA**: Impacts on environment in fuel consumption & emissions
- **System costs (in-vehicle equipment and infrastructure)**

Impact valuation

- **Net annual benefits**
- **Benefit-cost ratio**

Overall society vs **Stakeholders**
Foundation for successful evaluation

- Harmonised approaches across pilot sites, established partnerships between evaluation and pilots
- Smooth data flow from pilots via tools to all evaluation methods
- Multidisciplinary evaluation methodology
- Well-defined and tested evaluation plan for all research questions
More information on L3Pilot methodology

Deliverables

• D3.1 From research questions to logging needs (2018)
• D3.2 Experimental procedures (2019)
• D3.3 Evaluation methods (2019)
• D3.4 Evaluation plan (expected 2020)

Available for download at https://l3pilot.eu/download/
Thank you for your kind attention.

Satu Innamaa
Satu.Innamaa@vtt.fi
+358-40-7610717

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723051.