Transitions in Automated Driving

Virtual, 9-10 September

Alexander Eriksson
Volvo Cars
"Take over + automated driving" yields > 1m hits on Google Scholar
Take-backs

- Take over + automated driving yields > 1m hits on Scholar

- Heavy focus on the ‘hot-potato’ transition.

 - Drivers are ill prepared at responding to an unanticipated, critical situation.
Take-backs

• Take over + automated driving yields > 1m hits on Scholar

• Heavy focus on the ‘hot-potato’ transition.

- Drivers are ill prepared at responding to an unanticipated, critical situation.

- Driver’s of a manual vehicle respond to sudden events fairly fast, and are able to mitigate.
Take-backs

- Take over + automated driving yields > 1m hits on Scholar
- Heavy focus on the ‘hot-potato’ transition.
 - Drivers are ill prepared at responding to an unanticipated, critical situation.
 - Drivers of a manual vehicle respond to sudden events fairly fast, and are able to mitigate.
 - Riders of AD vehicles are less prepared to do the same.
The trolley problem
Some reflections

If we can act on it, than is the trolley problem really a problem?

- Trolley problem based on scenario where there is no way to escape a negative outcome
- **Time** is a key factor in recognising and processing multiple, potentially better, viable solutions
- If we can act decisively to buy more **time** (i.e. early emergency braking), the severity of the trolley problem is mitigated to a large extent

The technology being able to act earlier and more decisively than a human, thus offering a plurality of options, which circumvents the trolley problem
• Simulators are extensively used in contemporary studies.
 - Validity
 - Driver risk perception

• Our results don’t replicate with sim studies.
Re-focus

Other transitions warrants additional attention for example, activating AD.
- Faults
- Mistakes
- Mode confusion

Move testing out of the simulator, where possible
Wizard of Oz
Wizard of Oz
Mixed reality
Transitions are now regulated to a larger extent by the **ALKS** framework from UNECE.

§ 5.4.1 The activated system shall recognise all situations in which it needs to transition the control back to the driver.

§ 5.4.4.1 ... a minimum risk manoeuvre shall be started, earliest 10 s after the start of the transition demand

§ 5.1.5 If the driver fails to resume control of the DDT during the transition phase, the system shall perform a minimum risk manoeuvre. During a minimum risk manoeuvre, the system shall minimise risks to safety of the vehicle occupants and other road users.
Transitions are now regulated to a larger extent by the ALKS framework from UNECE.
Thank you for your kind attention.

Alexander Eriksson
Twitter: @DrAlexEriksson
Alexander.Eriksson.2@volvocars.com

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723051.
Record of Pictures

• Please use these pictures in project related context only.