

Data Privacy for Automation: Leveraging Privacy Enhancing Technologies SUMMER SCHOOL

Virtual, 9-10 September

Jesus Diaz Vico IBM Research GmbH

IBM Research

L3Pilot.eu

Twitter@_L3Pilot_

LinkedInL3Pilot

202C

Outline

- The Challenge.
- Data privacy (in automation) at present.
- Leveraging PETs.
- Demo.

The Challenge

- Connected vehicles continuously report to the cloud and among them.
- Only authenticated vehicles can submit data.
- Not anonymized data can be used to track vehicles.
- Anonymized data reduces utility.

We need anonymously authenticated messages that still allows some processing.

ETSI TR 103 415 V1.1.1 (2018-04)

Intelligent Transport Systems (ITS); Security; Pre-standardization study on pseudonym change management

Figure 2: ETSI ITS trust model (PKI)

- Pseudonyms are updated depending on:
 - Fixed parameters (time/distance/number of messages).
 - Silent periods.
 - Vehicle-centric parameters: speed/direction.
 - Vehicle density and mix-zones.
 - Combinations of the previous.

- Pros:
 - Simple.
 - Keeps utility.

• Cons:

- Limited privacy.
 - Linkable (by anyone) during pseudonym lifetime.
- Need to re-fetch pseudonyms.
- Storage at the server side:
 - Needs to maintain a long-lived list of used pseudonyms.

• Scenario:

- Vehicles keep sending data to the cloud.
- We need to support detection of anomalies.
- ... without identifying senders of non-anomalous messages.

Data	Pseudonym	Data	Pseudonym	Data	Pseudonym
80 km/h	1234abcd	5300 RPM	3456fedc	6.5 L	abcd1234
70 km/h	5678efab	5500 RPM	7890bafe	8 L	efab5678
85 km/h	9012cdef	4000 RPM	1234dcba	7 L	cdef9012

Speed	RPM	Fuel	Pseudonym	
80 km/h	5300 RPM	6.5 L	11111111	
85 km/h	5500 RPM	8 L	11111111	
70 km/h	4000 RPM	7 L	22222222	

- Vehicles add a "single-use" pseudonym to authenticate each message.
- These "single-use" pseudonyms can be linked by a special entity.

How?

 Instead of conventional certificates (as in ETSI's approach), we use a variant based on group signatures.

Convertably Linkable Signatures, from "*Group Signatures* with Selective Linkability", by Garms and Lehmann, 2019.

Group signatures:

- Users (vehicles) can be added to the group.
 - When added, they receive a user private key.
- Users (vehicles) can create signatures on behalf of the group.
- Verifiers can check that such signatures come form "someone" within the group.

Convertably Linkable Signatures:

• Also, a special entity can (with limitations) link sets of these signatures.

Approach:

- 1. Vehicles sign messages with CLS.
 - Each signature contains a "single-use" pseudonym.
- 2. The infrastructure verifies the signatures.
 - Receives assurance that signatures originate from valid vehicles.
- 3. When needed, the anomaly detection engine links sets of signed messages.
 - Without re-identifying the signer beyond the linkage.

CLS gives even more: Non-Transitivity.

Data	Pseudonym	Data	Pseudonym	Data	Pseudonym
80 km/h	1234abcd	5300 RPM	3456fedc	6.5 L	abcd1234
70 km/h	5678efab	5500 RPM	7890bafe	7 L	efab5678
85 km/h	9012cdef	4000 RPM	1234dcba	8 L	cdef9012

Query 1

Speed	RPM	Fuel	Pseudonym	
80 km/h	5300 RPM	6.5 L	11111111	
70 km/h	4000 RPM	7 L	22222222	

Query 2

Speed		RPM	Fuel	el Pseudonym	
	85 km/h	5500 RPM	8 L	33333333	
	70 km/h	4000 RPM	7 L	4444444	

• Pros:

- Keeps utility (suitable for most use cases).
- Maximizes privacy (as much as data allows).
- Reasonably efficient for high volumes of data.
- Minimizes storage requirements by server and vehicles.

• Cons:

• Utility restricted to "joins".

Demo

Future Directions

- Evaluation in realistic settings.
- Compatibility with current infrastructures.
- Analysis of further functionality.

Thank you for your kind attention.

Jesus Diaz Vico jdv@zurich.ibm.com @jesusdiazvico

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723051.

www.L3Pilot.eu

Twitter@_L3Pilot_

LinkedInL3Pilot