

# Enabling automation for Heavy Duty Vehicles - What the key aspects are SUMMER

Virtual, 9-10 September 2020

**Dr. Marc-Michael Meinecke, Mikael Johansson** Volkswagen AG, SCANIA CV AB VOLKSWAGEN

SCHOOL

2020

AKTIENGESELLSCHAFT

www.L3Pilot.eu Twitter@\_L3Pilot\_ LinkedInL3Pilot



### PROBLEM DESCRIPTION

#### WHAT MAKES AUTOMATION OF HEAVY DUTY VEHICLES SPECIAL COMPARED TO CARS?

\_

Volkswagen AG | Konzernforschung | K-GERFA/F

### WHAT MAKES AUTOMATION OF HEAVY DUTY VEHICLES SO SPECIAL?

VOLKSWAGEN

- Transporting goods
- Professional drivers
- Commercial activity
- Vehicles are much bigger and heavier than cars. Sometimes they pull a trailer.
  - $\rightarrow$  More difficult to manoeuvre.





# EXEMPLARY DISTRIBUTION OF TRANSPORT COSTS FOR LONG HAULAGE TRANSPORT IN EUROPE

VOLKSWAGEN

 Labour costs for truck driver sum up to 25 % ... 30% of total transport expenses





### CURRENT SITUATION IN EUROPEAN LOGISTICS BUSINESS

- Demand on transports is growing
- Enormous international competition
- Truck driver shortage





#### **CRUISE CONTROL**

### EVOLUTION IN LONGITUDINAL ASSISTANCE

| Aspects               |                                  | Cruise Control          | Adaptive Cruise Control |  |
|-----------------------|----------------------------------|-------------------------|-------------------------|--|
| Functionality         | Keep set speed                   | $\overline{\mathbf{O}}$ | $\overline{\mathbb{V}}$ |  |
|                       | Keep distance to vehicle ahead   |                         | $\bigotimes$            |  |
|                       | Incorporate vertical road layout |                         |                         |  |
| Main design criterion |                                  | Keeping speed limits    |                         |  |
| Technology            |                                  |                         | Radar sensor            |  |
| HMI                   |                                  |                         |                         |  |

### ADAPTIVE CRUISE CONTROL - ACTIVE PREDICTION

- Adaptive Cruise Control Active Prediction bases on ACC
- Goal: Predictive adaptation of speed to minimize fuel consumption taking into account vertical shape of road
- Result: Reduction of fuel consumption up to 5% (highly depending on geometry)





IIA CV AB



#### PLATOONING

## PLATOONING – FUNDAMENTAL CONCEPT

- Air drag force of single (isolated) vehicle:  $F_L = \frac{1}{2} \cdot c_W \cdot A \cdot \rho \cdot v^2$
- Platooning idea:
   Driving in air shadow reduces air drag, reduces fuel consumption









#### PLATOONING – CHALLENGES

- Platoons consisting of many vehicles increase savings ٠
- Platoons consisting of many vehicles might be recognized as a traffic blockage ٠
- Required changes of legislation still under discussion •



13



#### PLATOONING – EXAMPLES



#### PLATOONING – PRO'S AND CONT'S

| Aspect                                                 | Pro's                                   | Cont's                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduced fuel consumption                               | Possible due to lowered air drag        | <ul> <li>Difficult to keep short distance due to other interfering traffic.</li> <li>Tolerances in mass estimation,<br/>brake performance make it difficult to maintain required time gap.</li> <li>In an optimized platoon still differences in savings<br/>for the individual platoon members remain.</li> </ul> |
| Driverless<br>automated following<br>a leading vehicle | Possible in case time gap is very close | <ul> <li>Platoon might be separated (e. g. due to intrusion of other vehicles).<br/>In this case each vehicle has to be able operate without leading vehicle anyhow.</li> <li>Automation of independed vehicles might be possible.<br/>So, no leading vehicle is necessary at all.</li> </ul>                      |





# ALTERNATIVE TRANSPORT SOLUTIONS BESIDE PLATOONING

### ALTERNATIVE TRANSPORT SOLUTIONS BESIDE PLATOONING TECHNOLOGY

- Mechanically connected configurations with higher transport capacity
- Advantages:
  - Only 1 driver per truck-trailer-configuration needed
  - Less space occupied on roads
  - Less motor vehicles required
  - Less fuel consumption
  - Higher transport capacity in volume and weight



# ALTERNATIVE TRANSPORT SOLUTIONS BESIDE PLATOONING TECHNOLOGY

- Mechanically connected configurations with higher transport capacity
- Advantages:
  - Only 1 driver per truck-trailer-configuration needed
  - Less space occupied on roads
  - Less motor vehicles required
  - Less fuel consumption
  - Higher transport capacity in volume and weight







VOLKSWAGEN



### AUTOMATION FOR HEAVY DUTY VEHICLES

EXAMPLES

### EXAMPLE AUTOMATED DRIVING OF MOVING STREETWORK

- AFAS: Automated driverless securing vehicle for moving street work on highways
- Autonomous following vehicle to service vehicle (e.g. street-cleaner, lawn-mower, etc.)
- Accompanying vehicle is highly endangered to be hit by other traffic because of their high speed difference.
- Accompanying vehicle keeps distance to vehicle ahead by radar measurements. Lateral control is mainly bases on perception by camera and radar.



#### EXAMPLE OF AUTOMATED OFF-ROAD TRUCK

- Automation of a truck in off-road environment
- Sensors detecting surroundings, obstacles are represented in a grid map
- Path planner algorithm guides vehicle



Automated Driving in Offroad Environment by Volkswagen Group Research, MAN and SCANIA

#### **EXAMPLE OF AUTOMATED MINING TRUCK**

- Automation of tipper truck in Dampier salt mine in Rio Tinto/ Australia (in real customer operation)
- Automated truck follows a salt harvester machine and is being loaded. Afterwards the loaded truck drives automatically to an unload station.



EXAMPLE OF AUTOMATED MINING TRUCK

- Automated trucks does not need any space for a cabin any more
- Former space for cabin can be used to increase loading volume



EXPLORATION

23



#### CONCLUSIONS

### CONCLUSIONS - WHAT THE KEY ASPECTS ARE

- For commercial goods transportation only driverless makes sense.
  - Comfort and convenience of the driver/ passenger is always an issue for passenger cars but not for transports of goods. So, any driver assistance or L3 functions targeting these topics are not relevant for trucks.
  - Automation for fuel savings is already achieved with ADAS functions. So, this is also not a driver for autonomous vehicles.
- Commercial vehicles have a business case, they can afford expensive technical equipment and still save money by removing the driver.
   For passenger cars it is either a luxury function or a new mobility business model is required (like shared mobility and robo taxi).
- It's easier to identify a limited ODD for a commercial vehicle since many transports by nature is very repetitive. Most commercial transports use the same main roads, e.g. through Europe.
- Technology-wise there are many similarities between heavy vehicle automation and passenger car automation.
- Future research activities will focus on increasing the performance of the perception system.



# **ΤΗΑΝΚ YOU VERY MUCH FOR YOUR ATTENTION ΕΥΧΑΡΙΣΤΩ ΓΙΑ ΤΗΝ ΠΡΟΣΟΧΗ**

SCas

01----

ACAN



#### BACKUP

#### AKTIENGESELLSCHAFT

KONZERNFORSCHUNG



# ENABLING AUTOMATION FOR HEAVY DUTY VEHICLES WHAT THE KEY ASPECTS ARE

SEPTEMBER 9-10, 2020 • L3PILOT SUMMER SCHOOL • ATHENS/ GREECE DR. MARC-MICHAEL MEINECKE (VOLKSWAGEN), MIKAEL JOHANSSON (SCANIA)





## "NEW" ALLOWED COMBINATIONS IN GERMANY

- Combinations depicted are additionally allowed in Germany since 2017
- Limited to 40 tons weight
- Additional constraints have to be kept into consideration (for driver and route)





29

#### PLATOONING - PRO'S AND CONT'S

| Aspect                                                 | Pro's                                   | Cont's                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduced fuel consumption                               | Possible due to lowered air drag        | <ul> <li>Difficult to keep short distance due to other interfering traffic.</li> <li>Tolerances in mass estimation,<br/>brake performance make it difficult to maintain required time gap.</li> <li>In an optimized platoon still differences in savings<br/>for the individual platoon members remain.</li> </ul> |
| Driverless<br>automated following<br>a leading vehicle | Possible in case time gap is very close | <ul> <li>Platoon might be separated (e. g. due to intrusion of other vehicles).<br/>In this case each vehicle has to be able operate without leading vehicle anyhow.</li> <li>Automation of independed vehicles might be possible.<br/>So, no leading vehicle is necessary at all.</li> </ul>                      |



### CONCLUSIONS - WHAT THE KEY ASPECTS ARE

- For commercial goods transportation only driverless makes sense.
  - Comfort and convenience of the driver/ passenger is always an issue for passenger cars but not for goods transport so any driver assistance or L3 functions targeting these topics are not relevant for trucks.
  - Automation for fuel savings is already achieved with ADAS functions so this is not a driver for autonomous.
- Commercial vehicles have a business case, they can afford expensive sensors and so and still save money by removing the driver. For passenger cars it is either a luxury function or a new mobility business model is required (shared mobility and robo taxi).
- It's easier to identify a limited ODD for a commercial vehicle since many transports by nature is very repetitive. Most commercial transports use the same main roads, e.g. through Europe.
- Technology-wise there is not a huge difference between heavy vehicle automation and passenger car automation.

