Transition from automated to manual driving: What factors influence take-over time and performance?

Virtual, 9 -10 September

Prof Dr Marieke Martens
Bo Zhang
Transition of Control

Big next step for higher levels of automation

Discussion within UN-ECE: How to design for these `transitions`?

Lu et al. (2016), McCall et al. (2019)

• Driver initiated or System initiated
• Scheduled take-over of non-scheduled take-over
• Normal or Emergency situation
Driver Take-over time (TOT)

Timeline

- **Automated driving** (visually distracted)
- **Takeover process**
 - (Gaze reaction)
 - (Road fixation)
 - Start of the hand/foot movement
- **Manual driving**
 - Hand/foot on
 - Intervention
 - Execution of a maneuver

Takeover stimulus

Takeover time (TOT)

Takeover
Determinants of take-over time from automated driving: A meta-analysis of 129 studies

Bo Zhanga, Joost de Winterb, Silvia Varottoc,d, Riender Happeeb,c, Marieke Martensa,e
Inclusion criteria

1) Transition to manual (after hands off and feet off)
2) Take-over performed by a human by braking, steering or pressing a button
3) Presence of a TOR or a critical event
4) Reported mean or median TOT
5) 4 or more studies available with this variable
Methods

1) “Between study” correlation analysis to examine the relationships between study variables and mean TOTs across the experimental conditions

2) “Within-study” evaluation of the effect when holding other variables constant

Situation-related
- Urgency
- Non-driving tasks
- Behaviour of other road users
- Traffic density
- …

Study specific
- Simulator fidelity
- Experiment design
- Instructions
- …

Driver-related
- Age
- Driver states
- Experience
- …

Vehicle/system-related
- Level of automation
- TOR modality
- …
Variables studied

1. Mean age of the participant group
2. Simulator fidelity (low, medium, high)
3. Level of automation (L2, L3+L4)
4. Modality of the NDT (visual/acoustic/motoric/cognitive)
5. Hand-held device
6. Modality of the TOR (visual, auditory and tactile)
7. Urgency (low, medium, high) and time budget to take over (e.g. TTC)
8. Complexity of the driver response (low, medium, high)
9. Interaction with other road users during take-over process (binary)
129 studies included

126 car studies - 3 truck studies
520 mean TOT
4556 participants

- 40 high-end simulators
- 84 mid/low fidelity driving simulators
- 3 on-road studies
- 2 test tracks
Results: Study set-up (combinations)

- Higher levels of automation: Explicit TOR + NDT + longer TTC → in line with the definition of SAE Levels of AD
- NDT: motor task often combined with visual – cognitive task with auditory → standardized tasks were frequently used (e.g. SURT, cognitive N-back)
- Visual + auditory TOR (auditory + vibrotactile hardly combined)
- Complex driver response + higher urgency and other road users
- Low fidelity simulators + younger participants
General overall results
Results: between study

Urgency of the take-over scenario and HH device strongest correlations with the mean TOT

Weak correlation with modality of TOR or NDT

Strong correlation between mean and SD of TOT ($r = .82$)
Results (within)

- NDT and TOR modalities most frequent independent variables, followed by urgency, traffic density and age.
- Urgency and hand-held device were found to have large effects (MDs ~ 1.3 s)
- Familiarization of TO scenario shortened mean TOT (MD = -1.0 s)
- Visual-only TOR led to substantially longer TOT (MDs < -1.4 s)
- Effect of age is weak (MD = .10 s)
Summary

1) Urgency has strong correlation with mean TOT
 → if there is more time to take over, drivers use more time to take over

2) Non-driving related held-held task increases mean TOT

3) Modality of the non-driving related task (e.g., visual, auditory, motoric, or cognitive) showed small effects on TOT

4) Prior experience with take-overs has a strong effect

5) Drivers responded about equally quickly to vibrotactile, auditory, multimodal, or directional TORs (visual only slower!)

6) No consistent effect of age in the within-study analysis despite of the wide age variance (not controlled for trust..)
Limitations and further research

• Nearly all studies were conducted in driving simulators (minority high-end):
 • Relative instead of absolute validity?
 • Knowing to be in experiment
 • Almost all cars, limited number of truck studies
• The between-study analysis: correlational rather than causal
• Mean TOTs so individual participants’ transition times could have been much longer:
 Collisions are outliers in the TOT distribution.
• This meta-analysis investigated take-over time, not take-over quality.
Thank you for your kind attention.

Marieke Martens
m.h.martens@tue.nl

Bo Zhang
b.zhang@utwente.nl

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723051.