Code of Practice

EUCAR Annual Conference 2018
7th November 2018, Brussels

Robert Martinez v. Bülow, BMW Group
History of the Code of Practice (CoP).
Why do we need a Code of Practice for automated driving?

• The transition from low level automation (ADAS) to high level automated driving requires significant technical developments involving new technologies.
Why do we need a Code of Practice for automated driving?

- New challenges in development need to be addressed in order to ensure safest possible product for the users:
What is our goal?

Provide a comprehensive guideline with best practices for the development of AD functions:

Code of Practice for automated driving.

- Collect best practices on relevant topics.
- Describe a typical development process for an automated driving function.
- Include hands-on checklists for developers.
Scope of the Code of Practice for Automated Driving.

According to SAE document J3016, “Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles”, revised 2016-09-30, see also http://standards.sae.org/j3016_201609

Extend to selected non-EU regions

Extend to selected level 4/5 robot taxi applications

Extend to driving scenarios in urban / rural environment
Categories of the CoP:

• Categories of the CoP according to D2.1 „Code of Practice Framework“¹:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Design Domain Vehicle Level</td>
<td>Function description, system limits, test- / scenario catalogue</td>
</tr>
<tr>
<td>Operational Design Domain Traffic System Level</td>
<td>Remote assistance, V2X, MRM etc.</td>
</tr>
<tr>
<td>Safe Guarding Automation</td>
<td>Functional safety, cyber security, SOTIF, updates (e.g. over the air) etc.</td>
</tr>
<tr>
<td>Human-Machine Interaction</td>
<td>Provide guidelines for HMI, mode awareness/ confusion, controllability etc.</td>
</tr>
<tr>
<td>Behavioral Design</td>
<td>Traffic safety (mixed traffic), references to Ethics</td>
</tr>
</tbody>
</table>

Code of Practice Framework.

Development Phases

Definition Phase > Concept Selection > Proof of Concept > Design Phase > Verification > Validation & Sign off > Post Start of Production Phase

Requirements Specification > System Specification > Start of Production
Example 1: Safe Guarding Automation.
SOTIF - Safety in Use Analysis.

Development Phases

- **Definition Phase**
 - Function / System safety requirements
 - Safety in Use analysis

- **Concept Selection**
 - Architecture selection
 - Fallback strategy

- **Proof of Concept**
 - Trigger events assessment
 - Combinatorial simulation, proofworking

- **Design Phase**
 - Functionality refinement
 - Root cause analysis

- **Verification**
 - Testing of functionality

- **Validation & Sign off**
 - Safety validation

- **Post Start of Production Phase**
 - Field Operational Test

Finding safety use cases (foreseeable (mis-)use)

Safety in Use Analysis

- **Validation**
- **Remaining Risk Analysis**
- **Requirements / Measures**
- **Effectiveness Analysis**
- **V&V methods to prevent unintended (mis-)use**

Field observation

EUCAR Conference

7 Nov. 2018
Example 2: Human-Machine Interaction.
L3 HMI Checklist.

- **Goal**: Establishment of a comprehensive and easy-to-use checklist to assess the compliance of HMIs of AVs with most important best practices and standards.
L3 HMI Checklist.
Example: Colour Coding.

- **Guideline #15: Design for colour-blindness by redundant coding and avoidance of red/green and blue/yellow combinations.**

<table>
<thead>
<tr>
<th>Colour Coding Requirement</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Redundant coding is required (e.g. in case of colour-blind people).”</td>
<td>[18], S.48, NFR4A_UNI.4</td>
</tr>
<tr>
<td>“Red/green combinations are avoided. Blue/yellow colour combinations are avoided.”</td>
<td>[17], S.13</td>
</tr>
<tr>
<td>“Red/Green and Blue/Yellow codings should be avoided. Combinations of Blue and Red from the extreme end of the visible spectrum should also be avoided.”</td>
<td>[11], S.338</td>
</tr>
<tr>
<td>“Red/green and blue/yellow combinations should be avoided since these colour combinations might be confusing for people who are colour blind.”</td>
<td>[15], S.21</td>
</tr>
</tbody>
</table>

[17]: Stevens, A., Cnyk, S.: Checklist for the assessment of in-Vehicle information systems, Research Laboratory (2011)
[18]: AdaptIVe D3.3 (2017)
Thank you for your kind attention.

Robert Martinez v. Bülow, BMW

Special thanks to all L3Pilot SP2 partners

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723051.
L3 HMI Checklist. Summary of checklist topics.

Evaluation-Criterion

- **Level of information processing**
- **Noticing the message**
- **Information processing**
- **Action selection**
- **Action implementation**

Corresponding items of expert evaluation checklist

- Indications of system mode
- Display installation and information presentation
- Design of auditory and vibrotactile messages
- Legibility
- Colour coding
- Understandability
- Design of warning messages

Out of scope of expert assessment
L3 HMI Checklist.
Expert Assessment Test Procedure - Checklist items.

<table>
<thead>
<tr>
<th>Area / purpose</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational principles:</td>
<td>Guideline #1: Unintentional activation and deactivation should be prevented.</td>
</tr>
<tr>
<td>- System operation controlled by driver</td>
<td>Guideline #2: The system mode should be continuously displayed.</td>
</tr>
<tr>
<td>- Necessary mode indicators are present in the HMI</td>
<td>Guideline #3: Mode changes should be effectively communicated.</td>
</tr>
<tr>
<td>Display installation and information presentation</td>
<td>Guideline #4: Visual interfaces used to communicate system states should be mounted to a suitable position and distance. High-priority information should be presented close to the driver’s expected line of sight</td>
</tr>
<tr>
<td>- Displays are mounted at suitable positions</td>
<td>Guideline #5: HMI elements should be grouped together according to their function.</td>
</tr>
<tr>
<td>- Visual workload of information search is minimized</td>
<td>Guideline #6: Time-critical interactions with the system should not afford continuous attention.</td>
</tr>
<tr>
<td>Colour coding:</td>
<td>Guideline #13: Not more than five colours should be consistently used to code system states (excluding white and black).</td>
</tr>
<tr>
<td>- Promoting intuitive understanding</td>
<td>Guideline #14: The colours used to communicate system states should be in accordance with common conventions and stereotypes.</td>
</tr>
<tr>
<td>- Avoiding colour blindness issues</td>
<td>Guideline #15: Design for colour-blindness by redundant coding and avoidance of red/green and blue/yellow combinations.</td>
</tr>
</tbody>
</table>